
Unit 9
Completing Games
Unit Overview

This unit includes instructions for adding frequently-requested elements to
students’ games, such as extra levels and a scoring system. Students comfortable
with structures are encouraged to use nested structures in their games for more
complexity.

Learning Objectives:

Reinforce understanding of structures as they are used in their games

Product Outcomes:

Students will use the random function to make their game characters appear at different loations on the screen
Students will add a scoring system to their games
Students will add levels to their games
Students will use nested structures to add complexity to their games

State Standards See our Common Core Standards Table provided as part of the Bootstrap curriculum.
Length: 90 minutes

Materials and Equipment:
Computers w/DrRacket or WeScheme
Student workbooks
Language Table
The Completed Ninja World file [NWComplete.rkt from source-files.zip | WeScheme] preloaded on students’ machines
New background image for Ninja World level two [bg2.jpg from source-files.zip or your own 640 x 480 image

Preparation:
Language Table Posted
Seating arrangements: ideally clusters of desks/tables

Introduction
Randomizing Ninja World

Scoring and Levels
Challenge: Nested Structures

Closing

Agenda

5 min
15 min
35 min
30 min
5 min

file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs2/units/unit9/the-unit.html#lesson_Intro-Unit9
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs2/units/unit9/the-unit.html#lesson_Randomizing-Ninja-World
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs2/units/unit9/the-unit.html#lesson_Scoring-and-Levels
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs2/units/unit9/the-unit.html#lesson_Nested-Structures
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs2/units/unit9/the-unit.html#lesson_Closing6833
http://www.bootstrapworld.org/materials/CommonCore.shtml
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs2/resources/source-files.zip
http://www.wescheme.org/view?publicId=V8UEkAtsve
file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs2/resources/source-files.zip

(Time 5 minutes)

(Time 15 minutes)

(Time 35 minutes)

Introduction

Congratulations! You’ve worked very hard throughout the last 8 lessons, and now your games are almost completed!
Your player can move any way you want, you’ve written the code to detect how far characters are from each other, and
you’ve defined a whole bunch of conditional cases for different actions in your game.
Have you brainstormed some things you want to add to your game? You have 5 minutes to discuss your ideas with
your partner, and talk about how you could add them.
At this point in the course, students will have very different games, and will probably need individual help adding the
finishing touches or extra elements. This unit includes ideas and instructions for frequently requested game elements
(Using Ninja World as a template), but feel free to have your students get creative with their additions! For more
practice with algebra, try challenging students to some harder problems.

Randomizing Ninja World

If you open up your Ninja World file, you’ll see our (almost) completed game! However, right now the ruby and dog
appear at the same part of the screen every time, making this a pretty easy game. What will the y-coordinate of the dog
always be? What about the ruby?
Instead of appearing at the top of the screen every time, what if we could make the dog show up at a random y-
coordinate every time it goes off the screen?
Racket already has a function to give us a random number, which could represent a character’s y-coordinate. random!
random takes in one number as it’s domain, and returns a random number between 0 and that number. So if I write
(random 480) in my code, it could give me back any number between 1 and 480.
If we want the y-coordinates of our dog to change, we’ll have to add it to our world structure. Go back to the top of the
page where we defined our world and add in a dogY. Don’t forget to redefine your START and NEXT worlds, to
account for the extra item in your world struct!

;; The World is the x and y positions of the dog, x position of the ruby,
;; and y position of the cat
(define-struct world (dogX dogY rubyX catY))

What function draws the dog on the screen with the rest of the game characters? draw-world. Right now this
function draws the dog at it’s current x-coordinate, and a pre-set y coordinate. How do we get the dog’s y-coordinate
out of the world? (world-dogY w). Change the draw-world function so that it draws the dog at the current y-
coordinate instead of 400.
We said we want our dog’s y-coordinate to change when it leaves the screen. What function changes the game state
depending on the game’s conditions? update-world!
Our first cond branch in update-world checks whether the cat collides with the dog. If this happens, we don’t want the
dog to stay at its current y-coordinate. We already have the dog reappearing on the left side of the screen (by setting
its x-coordinate to -50). Let’s reset its y-coordinate to a random number between 0 and 480. Do you remember how to do
this?

[(collide? 320 (world-catY w) (world-dogX w) (world-dogY w)) (make-world -50
 (random 480)
 (world-rubyX w)
 (world-catY w))]

Further down in update-world, we check to see if the dog has gone off the right side of the screen. Once again, we
want to make the dog reappear at a random y-coordinate!
Carefully go through your code- since we changed our world structure to include a dogY, we’ll need to make sure we’re
including it every time we call make-world!
Once the dog is reappearing randomly when it leaves the screen, you can make the same changes to the ruby’s y-
coordinate to make it appear randomly, or add this concept to your own game.

Scoring and Levels

We’ve got Ninja World looking great! But right now there’s not a lot of variety. The player avoids the dog and gets the
ruby over and over again. We should mix things up a bit: how about adding new levels?
Typically a game would progress if the player has reached a certain goal. (Collected a certain number of rubies,
destroyed a certain number of zombies, or reached a certain score). Let’s start by adding a scoring system to our Ninja
World game.
The score is something that will be changing in the game, So we know it has to be added to our world structure. What
data type is the score? What will the score in our START world be?

;; The World is the x and y positions of the dog, x position of the ruby,
;; y position of the cat, and the player's score
 (define-struct world (dogX dogY rubyX catY score))

Remember! Since we’re changing the world structure, we now have to go through our game code- every time we make a

file:///Users/schanzer/Documents/Bootstrap/Development/curr/distribution/courses/bs1/units/unit10/the-unit.html#lesson_Harder-Problems-Algebra

world, we need to include the world’s score.
How to we get the score out of our world? (world-score w). Take 5 minutes and add a score to your game, every
time make-world is used.
Now that we have a score, when should it increase or decrease? In Ninja World, I want the score to go up by 30 points
when Ninja Cat collides with the target, and down by 20 points when colliding with the danger. Which of our cond
branches in update-world checks these conditions?
If the player collides with the danger, we want to make a new world with a lower score. All we have to do is subtract 20
from the score when we call make-world.

(define (update-world w)
(cond [(collide? 320 (world-catY w) (world-dogX w) (world-dogY w)) (make-world -50
 (random 480)
 (world-rubyX w)
 (world-catY w)
 (-(world-score w) 20))]))

On the next cond branch, make the score increase by 30 points when the cat collides with the ruby.
Our game has a scoring system! Now let’s add some levels.
When the player progresses to level two I want the game to have a different background image. The player reaches level
two when his or her score is greater than 500.
Let’s think about the first part- where do we define our BACKGROUND image? We want to keep our original
background for the first level, but let’s define a new variable, BACKGROUND2, that will be used for level 2.
You can use the provided background image, or walk students through finding and adding their own image to the
game.
Now that we have another background image, we need to draw it in our game- but we only want to see this new
background when a certain condition is met. When will the player reach level 2? When their score is greater than 500.
We’ll need to change our draw-world function so that it uses cond! Leave the current code alone for now and start right
under (define (draw-world w)). What’s the first thing we write? cond! And what’s the first condition that
we’re checking? Whether the world’s score is greater than 500!

(define (draw-world w)
(cond
[(> (world-score w) 500) (.....)]))

If the world’s score is greater than 500, the player progresses to the next level. For now, the only thing that I want to
change in level two is the background image. The second part of this cond statement will look similar to the code you
already have for draw-world, starting with put-image. What needs to change? Instead of putting all your images on
top of BACKGROUND, you’ll put them over BACKGROUND2, your new background image.

(define (draw-world w)
(cond
[(> (world-score w) 500) (put-image PLAYER
 320 (world-catY w)
 (put-image TARGET
 (world-rubyX w) 300
 (put-image CLOUD
 500 400
 (put-image DANGER
 (world-dogX w) (world-dogY w)
 BACKGROUND2))))]))

Don’t forget to add an ’else’ case before your original code, right underneath what you just wrote. If the score is not
greater than 500, the world will be drawn with the images on the original background:

[else
(put-image PLAYER
 320 (world-catY w)
 (put-image TARGET
 (world-rubyX w) 300
 (put-image CLOUD
 500 400
 (put-image DANGER
 (world-dogX w) (world-dogY w)
 BACKGROUND))))]

Great! Now our game has a level 2! You can use the same process to add more levels when the score gets even higher.
Some more options for students who finish early:

Change the update-world function so that the danger and target move faster if the score is greater than 500.
Use the text function to display a game over message on the screen when the score drops below 0.

(Time 30 minutes)

(Time 5 minutes)

Challenge: Nested Structures

Now that you know about data structures and how to use them, you can have games that are even more complex. For
example, you could make a game with many different characters by making each character their own data structure!

;; A character is an image, speed, x-coordinate, and y-coordinate.
(define-struct character (image speed x y))

(define DOG (make-character DANGER 10 -50 400))
(define CAT (make-character PLAYER 20 320 240))
(define RUBY (make-character TARGET 10 690 300))

Take a few minutes with your partner and define some characters for your own game. They don’t have to follow the
same pattern- your characters can have a health property instead of a speed, for example. Just be sure your newly
defined characters have the same properties as the character structure you define!
If each character is now its own structure, what will our world look like? Something like:

;; The World is three characters: (dog, cat, ruby) and a score
(define-struct world (c1 c2 c3 score))

Why is it important to use variable names (c1, c2, and c3) instead of just defining our world struct to include specific
characters (DOG, CAT, RUBY)? The same reason why we use variables in functions: we want to be able to change the
value of those characters later if need be.
When we define our first world, we can then make our predefined character structs part of that world.
(define START (make-world DOG CAT RUBY))
We need some way to access parts of a struct, even if it’s inside another. This is just like accessing any part of a struct.
How do I get the first character out of my starting world? (world-c1 START).
What does this expression evaluate to? A character struct! How would I get the speed out of this character?
(character-speed (world-c1 START))
For even more of a challenge, you can make every level in your game its own structure. A level could have a
background image, characters, a boolean value representing wheather the player has collided with another character, or
anything you like!

Closing

Congratulations! You’ve completed every lesson, and your games look fantastic! You’ve all been really impressive,
and it’s a pleasure working with you. We hope you’ll take these games home and keep hacking! Keep learning!
Have students show each other their completed games!

Bootstrap by Emmanuel Schanzer is licensed under a Creative Commons 3.0 Unported License. Based on a work
at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at schanzer@BootstrapWorld.org.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.bootstrapworld.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.bootstrapworld.org/
mailto:schanzer@BootstrapWorld.org

